8,368 research outputs found

    Microglial K(+) channel expression in young adult and aged mice.

    Get PDF
    The K(+) channel expression pattern of microglia strongly depends on the cells' microenvironment and has been recognized as a sensitive marker of the cells' functional state. While numerous studies have been performed on microglia in vitro, our knowledge about microglial K(+) channels and their regulation in vivo is limited. Here, we have investigated K(+) currents of microglia in striatum, neocortex and entorhinal cortex of young adult and aged mice. Although almost all microglial cells exhibited inward rectifier K(+) currents upon membrane hyperpolarization, their mean current density was significantly enhanced in aged mice compared with that determined in young adult mice. Some microglial cells additionally exhibited outward rectifier K(+) currents in response to depolarizing voltage pulses. In aged mice, microglial outward rectifier K(+) current density was significantly larger than in young adult mice due to the increased number of aged microglial cells expressing these channels. Aged dystrophic microglia exhibited outward rectifier K(+) currents more frequently than aged ramified microglia. The majority of microglial cells expressed functional BK-type, but not IK- or SK-type, Ca(2+) -activated K(+) channels, while no differences were found in their expression levels between microglia of young adult and aged mice. Neither microglial K(+) channel pattern nor K(+) channel expression levels differed markedly between the three brain regions investigated. It is concluded that age-related changes in microglial phenotype are accompanied by changes in the expression of microglial voltage-activated, but not Ca(2+) -activated, K(+) channels

    A General Algorithm for Sampling Rare Events in Non-Equilibrium and Non-Stationary Systems

    Full text link
    Although many computational methods for rare event sampling exist, this type of calculation is not usually practical for general nonequilibrium conditions, with macroscopically irreversible dynamics and away from both stationary and metastable states. A novel method for calculating the time-series of the probability of a rare event is presented which is designed for these conditions. The method is validated for the cases of the Glauber-Ising model under time-varying shear flow, the Kawasaki-Ising model after a quench into the region between nucleation dominated and spinodal decomposition dominated phase change dynamics, and the parallel open asymmetric exclusion process (p-o ASEP). The method requires a subdivision of the phase space of the system: it is benchmarked and found to scale well for increasingly fine subdivisions, meaning that it can be applied without detailed foreknowledge of the physically important reaction pathways.Comment: 11 pages, 6 figure

    Solid-solid phase transition in hard ellipsoids

    Get PDF
    We present a computer simulation study of the crystalline phases of hard ellipsoids of revolution. A previous study [Phys. Rev. E, \textbf{75}, 020402 (2007)] showed that for aspect ratios a/b≥3a/b\ge 3 the previously suggested stretched-fcc phase [Mol. Phys., \textbf{55}, 1171 (1985)] is unstable with respect to a simple monoclinic phase with two ellipsoids of different orientations per unit cell (SM2). In order to study the stability of these crystalline phases at different aspect ratios and as a function of density we have calculated their free energies by thermodynamic integration. The integration path was sampled by an expanded ensemble method in which the weights were adjusted by the Wang-Landau algorithm. We show that for aspect ratios a/b≥2.0a/b\ge 2.0 the SM2 structure is more stable than the stretched-fcc structure for all densities above solid-nematic coexistence. Between a/b=1.55a/b=1.55 and a/b=2.0a/b=2.0 our calculations reveal a solid-solid phase transition

    Sequencing Chess

    Get PDF
    We analyze the structure of the state space of chess by means of transition path sampling Monte Carlo simulation. Based on the typical number of moves required to transpose a given configuration of chess pieces into another, we conclude that the state space consists of several pockets between which transitions are rare. Skilled players explore an even smaller subset of positions that populate some of these pockets only very sparsely. These results suggest that the usual measures to estimate both, the size of the state space and the size of the tree of legal moves, are not unique indicators of the complexity of the game, but that topological considerations are equally important

    Percolation in suspensions of polydisperse hard rods : quasi-universality and finite-size effects

    Get PDF
    We present a study of connectivity percolation in suspensions of hard spherocylinders by means of Monte Carlo simulation and connectedness percolation theory. We focus attention on polydispersity in the length, the diameter and the connectedness criterion, and invoke bimodal, Gaussian and Weibull distributions for these. The main finding from our simulations is that the percolation threshold shows quasi universal behaviour, i.e., to a good approximation it depends only on certain cumulants of the full size and connectivity distribution. Our connectedness percolation theory hinges on a Lee-Parsons type of closure recently put forward that improves upon the often-used second virial approximation [ArXiv e-prints, May 2015, 1505.07660]. The theory predicts exact universality. Theory and simulation agree quantitatively for aspect ratios in excess of 20, if we include the connectivity range in our definition of the aspect ratio of the particles. We further discuss the mechanism of cluster growth that, remarkably, differs between systems that are polydisperse in length and in width, and exhibits non-universal aspects.Comment: 7 figure

    Novel crystal phase in suspensions of hard ellipsoids

    Get PDF
    We present a computer simulation study on the crystalline phases of hard ellipsoids of revolution. For aspect ratios greater than or equal to 3 the previously suggested stretched-fcc phase [D. Frenkel and B. M. Mulder, Mol. Phys. 55, 1171 (1985)] is replaced by a novel crystalline phase. Its unit cell contains two ellipsoids with unequal orientations. The lattice is simple monoclinic. The angle of inclination of the lattice, beta, is a very soft degree of freedom, while the two right angles are stiff. For one particular value of beta, the close-packed version of this crystal is a specimen of the family of superdense packings recently reported [Donev et al., Phys. Rev. Lett. 92, 255506 (2004)]. These results are relevant for studies of nucleation and glassy dynamics of colloidal suspensions of ellipsoids.Comment: 4 pages, 4 figure

    How Close to Two Dimensions Does a Lennard-Jones System Need to Be to Produce a Hexatic Phase?

    Get PDF
    We report on a computer simulation study of a Lennard-Jones liquid confined in a narrow slit pore with tunable attractive walls. In order to investigate how freezing in this system occurs, we perform an analysis using different order parameters. Although some of the parameters indicate that the system goes through a hexatic phase, other parameters do not. This shows that to be certain whether a system has a hexatic phase, one needs to study not only a large system, but also several order parameters to check all necessary properties. We find that the Binder cumulant is the most reliable one to prove the existence of a hexatic phase. We observe an intermediate hexatic phase only in a monolayer of particles confined such that the fluctuations in the positions perpendicular to the walls are less then 0.15 particle diameters, i. e. if the system is practically perfectly 2d

    Response of mouse epidermal cells to single doses of heavy-particles

    Get PDF
    The survival of mouse epidermal cells to heavy-particles has been studied In Vivo by the Withers clone technique. Experiments with accelerated helium, lithium and carbon ions were performed. The survival curve for the helium ion irradiations used a modified Bragg curve method with a maximum tissue penetration of 465 microns, and indicated that the dose needed to reduce the original cell number to 1 surviving cell/square centimeters was 1525 rads with a D sub o of 95 rads. The LET at the basal cell layer was 28.6 keV per micron. Preliminary experiments with lithium and carbon used treatment doses of 1250 rads with LET's at the surface of the skin of 56 and 193 keV per micron respectively. Penetration depths in skin were 350 and 530 microns for the carbon and lithium ions whose Bragg curves were unmodified. Results indicate a maximum RBE for skin of about 2 using the skin cloning technique. An attempt has been made to relate the epidermal cell survival curve to mortality of the whole animal for helium ions
    • …
    corecore